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A VIEW OF COMPLEMENTARY PIVOT THEORY
(or Solving Equations with Homotopies)

1. Introduction

• Our purpose here is to give a brief , valid, and painless view of the
equation solving computational method variously known as complementary pivot

theory and/or fixed point methods. Our view begins in Section 2 with a bit of
• history and some of the successes of the method . In Section 3 the unique con-

vergence proof of the method is elucidated with a riddle on ghosts. In Section

4 the general approach for solving equations with complementary pivot theory is

encapsulated in the “Hoiuotopy Principle”. In Section 5 a simple example is

used to illustrate both the convergence proof and the “Hotnotopy Principle”.
Rudiments of the general theory are stated and the “Main Theorem” is exhibited

• in an example in Section 6. Two representative complementary pivot algorithms
• are presented vis—a—vis the “Romotopy Principle” and “Main Theorem” in Section

7. Finally, in Section 8 the principal difficulty of the method is discussed

and some of the studies f or dealing with this difficulty are mentioned.

2. A Bit of History
If a point in time can be specified as the beginning of complementary

• pivot theory it is with the paper of Lemke and Howson [20]. . In this paper a

startling convergence proof was given for a finite algorithm for computing a

Nash equilibrium of a biinatrix game. To understand their contribution , it was
• previously known that a Nash equilibrium existed via the Brouwer fixed point

theorem and that exhaustive search offered a finite procedure f or computing

such an equilibrium. Furthermore, there is no theoretical proof that the

Lemke—Uowson algorithm has advantages over exhaustive search, and , in fact , one

can construct examples where the Lemke—Howson algorithm is no better than ex-

haustive search. However, the point is, as a practical matter , the Lemke—

• Howson algorithm versus exhaustive search enables one to solve bimatrix games

with characteristic size of, say ,  one thousand versus thirty . The situation

is analogous to that of Dantzig’s simplex method and linear programs.

In the paper [19) Lemke specified what is now known as “Lemke’s Algo-
rithm ” and , thereby , showed that the convergence proof could be used for a

much broader class of problems including quadratic programs .

• The next~ steps came from Scarf in [26,27 ,28]. Using the convergence
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proof of Lemke and Howson he proved for the first time that a balanced game has

a nonempty core and he described algorithms for computing a Brouwer fixed point

and an equilibrium point for the general competitive equilibrium model. Once

• again, it has not been proved that the algorithm improved upon exhaustive search,

but as a practical matter, problems could be solved that could not be solved be—
• fore (note, for example, that Brouwer’s theorem can be proved by repeated appli-

cations of Sperner ’s Lemma and that only finitely many simplexes need be
examined at each iteration in order to find a complete simplex).

There are now at least two hundred papers in complementary pivot theory,

and many very exciting developments have occurred . The convergence proof of

Lernke and Ilowson is now understood to be intimately related to homotopy theory,

• a matter which is the crux of this paper. Many classical results have been

given new “complementary pivot” proofs; to mention a few: Freidenfelds f 9) and

a connected set theorem of Browder, Kuhn [18] and the fundamental theorem of

algebra , Garcia [11] and the last theorem of Poncair~ , and Meyerson and Wrigh t
[23] and the Borsak—Ulman~theorem .

A great deal of effort and ingenuity has been expended in making the
• complementary pivot algorithms more efficient ; however, we shall not discuss

these matters until the last section wherein we will describe the principal
weakness of the complementary pivot algorithms.

Complementary pivot theory has been used to solve a number of specific

problems ; for instance, the following papers are concerned with complementary
pivot theory applied to the solution of differential equations : Ailgower and

Jeppson [1,2], Wilmuth [34], Cottle [4], Netravali and Saigal [24], and

Kaneko [14). Katzenelson’s [15) algorithm, and subsequent developments thereof,

f or electrical network problems also fits comfortably into the framework of

complementary pivot theory as discussed in this paper.

This paper is based upon Eaves and Scarf (8] and Eaves [61. The reader

m ight also want to consult Hirsch (121, Scarf (29] and Todd (311.

3. Convergence Proof

The following riddle and its solution illustrates the extraordinary con-

vergence proof of Lemke and Howson.
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Ghost Riddle: I eased through the front door of the allegedly haunted

house. Jus t as a ghost appeared, the front door slammed shut behind me. He

spoke, “You are now locked inside our house, but it is your fate that except
f or this room which has one open door , every other room with a ghost has two

open doors.” I thought, “Is there a room without a ghost?” 0
The diagram below spills the beans.

Front Door

.
~~~~~ 9c 1G

1 2 3 4
C C C

L 
C 

8

G 

7 61. 5

9 1  ‘oJ

Assume we are standing in Room 1 with the front door closed . Accord—

ing to the riddle there is exactly one open door, so let us pass through the

door into the adjoining room which we now call Room 2. In Room 2, assuming

the presence of a ghost, there are two open doors available to us, one of

which we just entered; so let us exit the other and enter Room 3. We continue

in this fashion to Rooms 4, 5, etc. The essential property of this process is

that no room is entered (i.e., numbered) more than once , which is to say, there

is no cycling. A proof of this fact is available by assuming the contrary and

examining the first room entered twice. Consequently , if there are only in

rooms in the house, then the process must stop with m steps or less, and

there is a room without a ghost. On the other hand , if the house is suf f ic ien t ly

haunted so as to have infinitely many rooms (George Dantzig supports this possi-

bility) then either the process stops with a solution , that is, a room without a

• H 3
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ghost, or it proceeds forever always entering new rooms.

In this isolated form the convergence proof. appears uselessly simple.

Wh~n we apply the convergence principle , the rooms will become pieces of

linearity of some function and circumstances will not be quite so transparent.

4. Homotopy Principle

Now consider the continuous function f : R’~ 
-, R

5 on n—dimensional

Euclidean space and the system of equations f(x) y. As a general procedure

for solving such a system we offer the following.

Homotopy Principle: To solve a system of equations, the system is

• first deformed to one which is trivial and has a unique solution. Beginning

with the solution to the trivial problem a route of solutions is followed as

the system is deformed, perhaps with retrogressions, back to the given

system. 0
Let us be more specific. First we introduce a family of problems

F(x,0) — y  0 < 0 < 1

where F is continuous in (x,0), P(.,O) — f , and 1(x ,1) — y is a trivially

solved system with a unique solution. We think of 0 as deforming the given

• system f(x) y to the system F(x,l) y with a unique solution, say x1.

1~ 
xl

_ _ _ _ _ _ _ _ _ _  
R _ _ _ _ _ _ _ _ _ _

deform

£ 0 F(~~,l)

R~~_ R’~
y y

Given System (0 0) Trivial System (0 1)

__________ -. - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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To obtain a solution to the given system f(x) = y we follow the

solution of F 1(y) beginning with (x1,1). Except for degenerate (rare)

cases the component of F~~(y) that meets (x1,1) is a route, that is,

a path.

Assuming F is piecewise linear on R~ x (0,1] the next schema

• illustrates the situation quite well.

R~

Solution Start

x Route followed x
0 

~~~
‘ by algorithm . .-

~~~~~~~~~

I ~
Retrogression

/ (0 increases)

—lF (y)

\~
/

L_ ~Je = o  8 — 1

The algorithm begins with the point (x ,1) and follows the route of

F (y). Under various conditions it can be shown that the route eventually

leads to R ’ x 0 and thus yields a solution of the given problem .

• 5
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- This principle is illustrated in Section 5 and given theoretical

credence in Section 6.

5. An Example

In this section we exhibit the complementary pivot convergence proof

and the “Homotopy Principle” by solving a system of piecewise linear equations.

This particular system of equations was chosen for its pedagogiai value; later

• we examine merely continuous functions.

• Let S be an n—simplex S in R
5 with extreme points

• I so, Si, . . .,  S .

n - 2

S
i

Let 9’ be a collection of smaller n—simplexes which subdivides S.

• a r ,a~ 9’, etc.

• ____________________________________________________

- _ _ _ _ _ _  .. ~~~. - •,
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By a ver tex of 9’ we mean a ver tex of any element of .9’.
• . Now let f : S -~~ S be a continuous function on the simplex with the
• • following three properties.

a) On each element of 9’, f is linear, that is, af fine.

b) On the boundary of S, f is the identity, that is,

f (x) — x for x in ~S.

c) Vertices of the subdivision are carried by f into extreme points
• of S, that is, f(vertices) C {s~~ . . .,  s}.

Let y be some interior point of S and we consider the system of

equations f(x) — y. Toward solving this system label the vertices of 9~ accord-
ing to the extreme point to which it is mapped, that is, define the labeling

function £ on the vertices by t(v) i if f(v)

Assume tha t we thus obtain the following.

2

0

H 0 1

1

0 
- 

1

We call a simplex a of .9’ completely labeled only if all labels
0, 1, . .. ,  n are present on its vertices. In the figure above there is

exactly one such , namely the upper right one.

Let us observe that solving f(x) — y is equivalent, modulo solving

a system of linear equations, to finding a completely labeled simplex. If a

simplex t of .9’ has only labels {0, ..., n} —(ii then in view of the

linearity of f on r , f would map the entirety of t into the face S

spanned by {s~ . ... , S } ~~~{S j}. Consequently , no point of t would hit the

7
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interior point y. On the other hand, if a simplex r of .7 is completely

• labeled then r is mapped onto S, and here some point of t hits y. So for

• the moment we focus on the task of finding a completely labeled simplex.

To execute the task of finding a completely labeled simplex we shall

employ the “Ghost Riddle” as follows to obtain “Cohen ’s Algorithm”, see (3].

We regard as a room a simplex of 2’ and as an open door a face of a simplex

of 7 with labels 0 and 1 (if n > 2 a face of a simplex of .9’ with
• - labels (0 , ..., n — 1)). By passing through open doors the path followed is

indicated below and terminates with a completely labeled simplex.

2

Stop

Start~~~t..—
.))

Prima facia this procedure works so smoothly that it seems rigged . But

suppose that the n—simplex a of 9’ has vertices (t 0,  ..., t~~~_ 1
) with

labels (0 , . . . ,  n — 1). If the remaining vertex t has labels n, then one

has a completely labeled simplex. But , if the remaining label is I for some

0 < i’< n — 1, then there is exactly one other face of a, namely , that spanned

by {t 0, . . . ,  t } — . { t~~~~) .  tha t has labels {O , . . . ,  n — 1). Thus , if a room

has at least one open door, then either It is the target (i.e., a completely

labeled simplex) or it has exactly two open doors . Since only one door passes

from outside the simplex S to the inside and since there are only finitely

many simplexes , the procedure must terminate with a completely labeled simplex.

• 8
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Our aim in the above exercise was principally to exhibit the convergence

proof in action. Next we exhibit use of the “Homotopy Principle” and show that

it yields the algorithm just given, “Cohen’s Algorithm”, for solving f(x) = y.

Before applying the “Homotopy Pr inciple” to solve f(x) = y let us re-
call an elementary fact from linear algebra. Let L : ~~~~ Rn be a linear

map of rank ii from (n+1)—space to n—space. If y is any point in the

range R~, then L 1
(y) is a line. Taking matters one step further let a be

an (n+l)—cell, that is, a closed polyhedral convex set of dimension u + 1.
Let L : a -+ Rn be a linear map where L(a) has dimension a. Then for most
values of y in Rn either L 1(y) is empty or is a chord of a

whose endpoints lie interior to n—faces of a. There are a few values of y

where L 1(y) meets an (n—l)—f ace of a; these y’s we call degenera te (or
• 

• critical) but for convenience we shall always assume that our y is regular ,

that is, not degenerate. There are measures for dealing with degenerate y ’s

but the treatment for them will not be discussed in this paper, (see Eaves [6]) .

• Given the system f(x) = y we introduce a family of problems

F(x ,O) = y. Let x1 
be any point in interior of the face of S spanned by

s0 
and s

1 
(for n > 2 by s~ , 

~l’ 
and define the homotopy , that

is, function , F by

F (x ,8) = f(x) + (y—x
1
) 0

for 0 < 8 < 2. So F carries points of the cylinder M = S x (0,2] into R ’.

9
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• M — S~x (0,2) (s2, 2)

• S x {2) (s0, 2) N N (si ,2) 0 = 2

(x
1~

l)~~~ç..~~ -

s x (l} “4~~ 8 = 1

S x {0} (S~~ O) 

y~2~
) 

~~l’°~ 
0 = 0

We can subdivide the cylinder N S x {0 , 2} by le~ ting -it be the

collection of cells of form a x {0 ,2} where a is a cell ~f 9’. Now observe
that F is piecewise linear with respect to .it , that is , P Is af fine on each

cell of .41.

At 8 = 0 the system F(x,0) y is the system f (x) = y. For 8 > 0

the system of particular interest is

F(x ,8 ) y

* (x ,e ) e a M
8 > 0

The second condition requires that (x,8) is in the boundary of N, that is,

in the top , bottom or some side of M. We argue that the system * has exactly
one solution , namely , (x1, l) .

If 8 > 1 then y — 8(y — x1) is not in S and clearly f(x) — y —

0(y — x1
) can have no solution. If 0 < 8 < 1 then y — 0(y — x1) is i.~-

ten or to S and f (x) — y - e(y — x1) with x e ~S can have no solution,

10
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since f is the identity on the boundary . If 0 — 1 our system becomes
• f ( x) x1 with x e 3M, and again since f is the identity on the boundary,

clearly x = x1 is the only solution.

So there is one solution (x1,l) away from the bottom of N and we

seek a solution on the bottom of M; this is precisely our desired situation.

Assume that y is a regular value , that is to say , let us assume that
does not meet any (n—l)—faces of elements of .A~. Given (x1, l) and

the cell a1 
x {0 ,2) of .,I( which contains it we have a linear map from the

(n+l)—cell 0
1 

x {0,2} to ~
n
, so we apply our result from linear algebra.

F ’(y) ~ (a~ x (O ,2}) is a chord of x {O ,2}

zi •~

(x1,1)~~~~~

1
x

(si,0)

Let 2
0 

= (x 1, 1) be one end of the chord and z
1 the other ; calculating

21 is just a matter of solving a linear system of equations. Next we go to the

(n+l)—c ell a x (0,2) of ,j’j that  contains z but not z and repeat the
• procedure to get a chord F (y) (‘I (a 2 

x (0 ,2)) of 0
2 

X (0 ,21 , etc.

11
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• In this manner we continue to follow the route of F~~(y) beginning with

(x1,l). Observe that this route can have no forks. Eventually the route

yields a point 2k in S x (01 and the system f(x) y is solved.

a0 
= (x1,l) ~ ~~~—-;t... ~

21<

~~
- -ì

sx{ O }

What is the relation of the route of P
1(y) beginning at (x1,l) and

“Cohen’s Algorithm” applied to the problem? Well, they are in essence iden-

tical once the smoke has cleared. If the route of F
1(y) beginning with

(x1,l) Is projected down to the base S x {lO} of N we see that it passes

through the same sequence 01, 02, .. of rooms as “Cohen’s A1gorithm”~ In

this sense we regard “Cohen’s Algorithm” for f (x) — y as that yielded by the

-~~ 
“Homotopy Principle”.

- 
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6. General Theory

The general theory is to be sketched here. As the example of the

previous sec tion contains most of the ideas involved in the general theory, the
conceptual step to the material presented here is small.

Cells are our building blocks. We define an rn—cell to be a closed

polyhedral convex set of dimension m.

• Let .41 be a collection of rn—cells and let N be the union of these

cells. (N,.4~’) is defined to be a subdivided m—manifold if the following

• three conditions hold.

a) Given any two cells of .41 either they do not meet or they meet in

a cotmnon face.

b) Any (m—l)—face of a cell of ,4i lies in at most two cells of At.

c) Given any point of N there is a neighborhood which meets only
finitely many cells of At

Condition a) prohibits construction such as

LIIiIIiiiiiiiiii
and requires constructions such as

or 

ic:z::::::~II~iIIIlIIIIII~IIIII1

13

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘-..- -- •-~~ --~ - •. —-- .•- ~~~
___

~~~~~_.~~~( ~~~it_i.~ —



Condition b) prohibits construction such as

a, r~ p E At

As an example of a 1—manifold we have

I

where .41 contains 8 1—cells. A 1—manifold is a disjoint collection of

routes and loops; the previous example contains one route and one loop. Note

that a route or loop of a 1—manifold contains no forks; a proof of this point

requires essentially the “Ghost Argument” of Section 3. As examples of a sub—

divided 2—manifold we have (S , .?) of the previous section of the surface of

• cube where .11 is the set containing the top, bottom, and sides. We call M

an rn—manifold if for some ~i1, (M,,ff) is a subdivided rn—manifold.

I ’
-

~~ 

14
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By the boundary 3M of a subdivided rn—manifold we mean the unioi*of all

(m—l)—faces of cells of .41 that lie in exactly one rn—cell. Thus, for example,
the boundary of the surface of a cube Is empty . For further examples consider

a ’~~~~~~~~

”

’

’

~~~~~~~~~~~~~~~’b 
: : {a ,b}

I 

3M=~~

j m 1

Let N be a 1—manifold and (M,j/) a subdivided rn—manifold, where
N is contained in N. We say that N is neat in (N,,4~ if the following
three conditions hold.

a) N is closed in N .

b) The boundary of N lies in the boundary of M.

c) The collections of nonernpty sets of form N (~ a with a in .41 forms

a subdivision of N.

In the following diagram we show a 1—manifold (which is a route) N neat

in a subdivided 2-manifold M.

15
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Now we can state the main theorem for regular values y.

Main Theorem (Regular Values) : Let (M,.it) be an (n+i)—manifold and

P N * R° be ,11 piecewise linear. If y in F(M) is regular, then F~~ (y)
is a 1—manifold neat in (N,,,i/). 0 

-

Recall that y is a regular value if F 1
(y) does not meet any (n—i)—

faces of cells of (M,.4(). Note that for y regular, a loop of F~~(y) cannot -

meet the boundary of N.

For purposes of illustration of the theorem, consider the following sub-

divided 2—manifold (M,.iI) in R
2

H I
(1 1) (2,1)

:

~

o

Z

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3

~

o x1

(0 ,- ~ (1,-l) (2 ,-l) - 

- 

.

16
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Let F — 11 P~ 13 F4 
where the 11

1 s are defined in the schema below to—

gether with the requirement that the Y~ ’s are piecewise linear with respect

to the indicated subdivisions. Let v represent any vertex.

=

1 ~~~~~~~F~(l,—1) = (1,0) 1
1
(v) v v # (1,—i) - -

H
F2 (2 ,— 1) (2 ,1) F2 (v) v v ~ (2 ,—i)

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(0

~
0)> 

1 14

F4
(x ,y) - y -

17
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F1 collapses the region A , 
~2 flips C over to B , F3 collapses the

• 
- region D, and F4 projects to the vertical axis. So F~

1 of any set can be
discerned by inspection.

By calculating F 1
~(e), F 1[F 1(c) ] ,  F 1[F 1(F 1(c))] and finally

F (c) — F1 ~~~ 
(13 (F; (c)))] we can see that 1 (c) is the 1—manifold

(that is, route) N which is neat in (M,,,jj).

F 1
(y) will be a neat 1—manifold in (M,Jg) for all y in (—1 ,0) Li (0,1).

The values —1, 0, and 1 are degenerate and the reader might want to investi-

gate P~~ of one or all of them, especially 1 1
(0).

The “Main Theorem” justifies the notion of following a route in F~~ (y) in
the “Romotopy Principle”. That is, assuming y is a regular value, then in Sec-
tion 5 we were following a 1—manifold (route) neat in (N,~,Aj) to solve f(x) — y.

7. Lernke ’s Algorithm

The linear complernentarity problem, which was first stated by Cottle, is:

Given an n x n matri ’c A and n—vector q find a z and u such that

A z — Iw q

z> 0 w > 0  z~w O

To solve such problems Lemke introduces an n—vector d > 0 and considers the

augmented system

18
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F

A z—  Iw + d 8 = q

z > 0  w > O  8 > 0  z.w 0  
*

Lemke ’s algorithm proceeds by generating a path of solutions to the augmented

system. To explain his algorithm from the perspective of the general theory

first define f~ : R1 + R0 for i — 1, 2, . . . ,  a by

A
ixi 

if x
1
> 0

f~ (x~) —

I~x~ if x1
< 0

where A1 and Ii are the ~th columns of A and I, the identity, respec—
tively. Define f : R~ -‘ R1

~ by

a
f (x) 

~1

where

x — (x1, ... , x~ ) .

The complementary problem is equivalent to f(x) q and the augmented sys-

tem is equivalent to f(x) + Od — q with 0 > 0. So, define F(x,8) = f (x) +

Od as the homotopy ; note that F is piecewise linear with respect to the

orthants of R” x R~. To solve f(x) — q Lemke’s algorithm follows the path

of F~~(q) beginning with 0 large and x < 0. Observe that F~
1(q) , if q

is regular , is a 1—manifold neat in R~ x R~ which is subdivided by its or—

thants. To show that the route of the algorithm yields a solution to f(x) — q

requires conditions on the matrix A, an issue that will not be treated here.

8. The Eaves—Saigal Algorithm

Let g : S .‘ be a continuous function from a simplex S in R~ to

its interior L Let us compute a fixed point x g(x) of g, or equiva—

lent]y, a zero of f(x) g(x) — x. The first step is to subdivide the cylinder

N — S x (0,1] with ii as indicated in the picture below.
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S x (11 should not be subdivided and the size of the simplexes of the sub—

division should tend to zero uniformly as the simplexes near S x {O}. We

pause to note here that in a computer the subdivision exists only in the sense

that there is a formula that can be used to generate portions of the subdivision

as needed.

Let F(x,0) f (x) for all vertices (x,0) of’the subdivision. Define

F N + Rn by extending F to all of M in such a way that F is affine on

• the cells of .A( ; this extension is unique. Once again, in. a computer F is

only generated as needed. We now have the property that F(.,1) is linear and

t F(- ,t) tends to f as t tends to 0. F(x,l) = 0 is a linear system and is
- 1 easily shown to have a unique solution (x1,1).

Beginning with the point (x1,l) the route of F~~ (0) is followed;
p
_l
(Ø) is a neat 1—manifold in (M,At) if 0 is regular. The x component

of the route tends (as the subdivision gets finer and finer) to a solution of

f(x) 0, that is, a fixed point of g.

8. Internal Developments

The principle weakness of complementary pivot theory is simply that

there are too many cells to traverse along the route of F
1
(y). Many studies

have improved the situation ; let us mention those that seem to be the most im-

portant. The “restart” method of Merrill [22] permits, in effect , many cells to
be skipped . In the presence of differentiability Saigal [25] has shown that
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I Merrill ’s method can be used to obtain quadratic convergence; in addition, it
becomes clear from his analysis that one should formulate the system of equa—

tions ro be solved so that they are as smooth as possible; the routes to be

followed are then less inclined to turn radically. In the absence of special

structure Todd has shown that the simplexes (and cells) should be as round as

possible, that is, not long slivers.
Kojima [17), and recently Todd [31], have shown how to use special

• structure of the function as linearity and separability to drastically reduce

the number of cells. Van der Laan and Talman (33] have revived an idea of

Shapley (30] which, in effect, enables one to move through some fraction of
• the cells more quickly; for lack of a better term this technique is often re-

ferred to a “variable dimension method”. Garcia and Gould (10] have proposed

an idea with similar affect. The works of Kellogg, Li, and Yorke [16] and

Hirsch and Smai.e [13] avoid cells altogether by using differential homotopies,

see Li (211,but , then, following a differential path is more difficult than

following a piecewise linear route; the tradeoff is not yet understood.
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